APEC 2013 Industry Session: Key Components for EV

GaN Offers Advantages to Future HEV

Yifeng Wu
ywu@transphoromusa.com
Transphorm Inc.
115 Castilian Dr.
Goleta, CA 93117, USA

Table of Contents

- GaN's potential as an efficient kV-class devices
- GaN-on-Si HEMT Performance and robustness
- 3. High temperature operation
- 4. Device paralleling for extended power
- 5. GaN diode-free hard-switched bridges
- Motor drive system benefits from GaN
- 7. Summary

Key Considerations For HEV

- 1. Resistance-capacitance figure of merit at high voltages
- 2. Over-voltage, dV/dt & dl/dt capabilities
- 3. High temperature tolerance
- 4. Extended power capability
- 5. Hard-switched H-bridge simplicity & performance
- 6. System benefit

GaN Is Inherently a Highly Reliable Material

- GaN is inherently reliable
 Wurtzite Crystal: high biding energy
- Dislocations in GaN is benign
 Lasers stable with 100x more dislocation than other semiconductors
- Intrinsic device reliability has been proven in RF applications
- Learn from experience in RF devices
 Epi quality for high μ & low leakage
 Passivation guidelines for low trapping
 Principle of electric field management
 Basic fabrication process
- Challenges:

High voltage epi / device designs & process realization

New operation space exceeding traditional package schemes
Stringent qualification requirement

GaN Crystal Structure

GaN RF Device Reliability

GaN HEMT Spike Tolerance Test at Vdc=600V Using Artificially-High Parasitic Inductance

Vdc =600V, Inductor current =16A

Normal layout

4cm² loop inserted to induce spike

- GaN HEMTs successfully turned on and off 16A current at 600V bus with parasite inductor loop of 4cm² (90nH with current probe on).
- Voltage transient up to 380V/ns and spikes up to 850V.
- Device has no functionality change after 100,000 shots of 850V spikes.
- Datasheet spike rating 750V for safety margin.

600V Converter Operation at 100kHz

- GaN-on-Si HEMT achieves 99% 1:2 boost efficiency at 100kHz
- Low on-resistance, low charge and high speed are key in obtaining high efficiency for compact systems running at high PWM.

600V GaN-on-Si HEMT Voltage Blocking Capability at 175°C

kV capability at 175°C.

High Temperature Converter Operation Compared with Si CoolMOS

- GaN devices show lower increase of loss at high T.
- Due to less heating & lower temperature sensitivity.

GaN-on-Si Hybrid HEMT High Temperature Operation up to 1.5kW at T_c=187°C (T_i=215°C)

Hi-Temp operation of GaN HEMT

- GaN-on-Si can operate at high volt & high current at Tj=215C with ease
- HT performance lends support for inherent

Preliminary Life Time Indication

10⁶ hr for Eff. to degrade by 0.2% (By no means device life time prediction)

Device Paralleling for Extended Power Without Reducing Speed and Efficiency

- Equal-length fan-in
- Low-impedance diode termination
- Equal-length inductive fan-out

Parallel GaN HEMT Boost Converter Performance (4x)

Vin/Vout =220V/400V, f=100kHz

- Roughly 4x increase in output power
- No loss in efficiency

Table of Contents

- GaN's potential as a efficient kV class devices
- 2. GaN-on-Si HEMT Performance and robustness
- 3. High temperature operation
- 4. Device paralleling for extended power
- 5. GaN diode-free hard-switched bridges
- 6. Motor drive system benefits from GaN
- 7. Summary

GaN HEMT Offers Low Qrr in Reverse Conduction Mode, Enables Simple Hard-switched Bridge Operation

Qrr=1000nC at 9A, 400V

Qrr=54nC at 9A, 400V

- Both measured in the same test board
- Transphorm GaN HEMT was tested at 450A/μs with little ringing
- CoolMOS was not stable at 450A/μs. dl/dt reduced to 100A/μs for stability.
- GaN HEMT has Qrr of ~20x less than CFD-type CoolMOS (Low Qrr design).

Device Suitability for Hard-switched Bridge Applications

Bridge configurations

Bridge operation properties:

	Si MOSFET	Si IGBT	GaN
Initial forward drop (V _f)	No	Yes	No
Ron Resistance (R _{ON})	Low	Extremely Low	Very Low
Reverse conduction	Yes	No (Need FW-Diode)	Yes
Reverse Qrr (body diode)	High (hard switch bridge impractical)	NA	Low
Operation speed*	Fast	Slow to Medium	Very fast
Overall bridge performance	Poor	Good	Superior

Performance Benchmarking Between IGBT and GaN Bridges

Si IGBT Bridge Converter

GaN Bridge Converter

- Buck converter is configured from a half bridge
- 2 state-of-the-art HF IGBTs + 2 state-of-the-art SiC SBDs were used in IGBT bridge
- 2 Transphorm GaN HEMTs were used in GaN bridge

Spec comparison: Vbd	IGBT 600 V	GaN 600 V
Imax at 25°C	23 A	19A
Imax at 100C	12 A	14A
Vce (Ron)	2.1 V at 12A	(0.15 Ω)

Output Waveforms Between IGBT and GaN Bridges

Rise time:

GaN = $2.8 \, nS \, (1.5-2ns)$

 $Si\ IGBT = 7\ nS$

@

400V

4.5A

Fall time:

GaN = 8 nS

 $Si\ IGBT = 42\ nS$

- GaN has 3-5x less rise time: Reduced commutation loss
- GaN has 5x less fall time: Much less output charging loss

400-200V Buck Performance as a Function of Frequency

- Si IGBT loss escalates as frequency increases (breaking down at 400kHz)
- GaN bridge converter maintains >98% at 300kHz
 High PWM frequencies enable inductor/capacitor size reduction

GaN Diode-free[™] 3-Phase Bridge Modules

Module Schematics

Module spec:

- 6 in 1 switches
- 600V, 14A capability at $T_C = 100^{\circ}C$

Module Package

Transphorm's High-Frequency 3-Phase GaN Motor Drive Inverter

Available as Demo kit from Transphorm

- High frequency design enables compact filter
- Pure Sine-wave output eliminates un-wanted PWM stresses on motor

Output Current Waveform Comparison

IGBT Inverter: PWM Power

GaN Inverter: Sine-wave Power

- GaN inverter operating at 100 kHz with compact filter & pure Sine-Wave output
- IGBT inverter operating at only 15kHz with PWM output
- GaN inverter output current is spike-free, ideal for motor drive

GaN Motor-drive at 100kHz with Filter Vs. State-of-the-art IGBT at 15 kHz w/o Filter

GaN Inverter efficiency exceeded IGBT:

GaN: 100kHz, include filter loss

IGBT: 15kHz, w/o filter loss

 Superior efficiency margin of GaN allows high PWM and filter losses

Motor Drive System Efficiency: GaN Vs. State-of-the-art IGBT

- Pure Sine-Wave output from GaN inverter significantly improved motor efficiency
- Overall system benefit is compelling:

2.5% at full load, ~4% at mid load and ~8% at low load

10kW GaN Converter At 600V Bus

 GaN can push power conversion to new power/frequency space

transphorm

Summary

- 1) GaN-on-Si have shown superior performance including low Ron, kV-level breakdown voltages, high spike tolerance and high temperature robustness at >200 C.
- 2) Device paralleling at high speed demonstrated with 4x increase in power and no loss in efficiency at 100 kHz.
- 2) GaN enables diode-free bridge hard-switched at 5-10x higher PWM than conventional IGBT, yet offering high efficiency.
- 3) Compact on-board filtering realized with high PWM, boosting motor system efficiency by 2-5%.
- 4) 10-kW GaN-based converter demonstrated with a single H-bridge, further scaling will enable HEV level applications.

